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PRELIMINARY DEVELOPMENT OF AN APPROXIMATION
10 PROCEDURE FOR SUPERCRITICAL WING DESIGN

OPTIMIZATION APPLICATIONS

Stephen S. Stahara

Summary

An investigation was carried out involving the preliminary
development of an approximation procedure and associated computational
codes for rapidly determining approximations to nonlinear,

" ~three-dimensional flow solutions, with the purpose of establishing a".:
method for minimizing the computational work requirements associated

with design optimization studies of supercritical wings. The results .,

iep-e tconcern the extension of a previously-developed successful
approximation method for determining accurate approximations to
two-dimensional nonlinear transonic flows involving the simultaneous
change of multiple geometric and/or aerodynamic parameters. The

-. specific development involves combination of the nonlinear approximation
procedure with the FL022 three-dimensional wing transonic flow solver (rr :'
together with the CONMIN optimization fpvoedure in a configuration
suitable for supercritical wing design/optimization studies. . .
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1. INTRODUCTION

The remarkable success of advanced computational methods for 1C'
determining accurate solutions to increasingly complex fluid dynamic
phenomena has now been well established across a broad range of flow
problems. What has also become simultaneously apparent with this
success is that a major impediment exists to the implementation of these
emerging codes in highly-repetitive usage applications. This is due to
the excessive computational demands required by their straightforward
application. Many such applications simply cannot afford the-
computational cost associated with the repetitive use of these
higher-level numerical solvers. Thus a need clearly exists for the
development and implementation of sufficiently general and accurate

* nonlinear approximation methods that are capable of reducing these
computational requirements. While this need exists across a spectrum of
aerodynamic uses, it is particularly high in supercritical wing
optimization applications. For that application, both the basic
aerodynamic computation is highly time consuming and the number of
design variables usually required for a satisfactory result is large,
resulting in any optimization study becoming computationally expensive
under the best of circumstances, and in many instances prohibitively so.

The final or ultimate goal beyond this preliminary study is to -

* develop and demonstrate the means for substantially reducing the overall
computational requirements necessary for general supercritical wing
design optimization. It is conceived that these methods would be.
coupled with high run-time general supercritical wing computational flow
field solvers and would be used in conjunction with them in applications
where large numbers of related nonlinear solutions are needed. The time
saving would be accomplished by development of rapid approximation
methods that would enable the actual number of expensive numerical flow
solutions required in any optimization study to be reduced to a minimum.
The actual implementation would entail using the rapid approximation
method together with a certain minimum number of expensive flow
solutions to then subsequently predict all of the aerodynamic flow-
solutions required by the optimization search process as that procedure
searches through the design variable solution space to reach the optimum
design.

That such procedures are achievable has now been successfully-
demonstrated for two-dimensional flows. In studies made by the present
author and reported in Refs. 1-7, a remarkable nonlinear approximation
method was developed and extensively tested on a wide range of both
continuous and discontinuous nonlinear flow problems. Its ability to
accurately predict nonlinear solutions of primary interest to this study
was first confirmed in case studies involving a variety of strongly
nonlinear transonic flows. The method was then coupled with an
optimization procedure and tested on several two-dimensional design
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problems. The results demonstrated the potential of the approximation
I. method to reduce the computational work in such applications by an order

in magnitude with no degradation in accuracy.

*.: The work reported here involves the preliminary extension of these
-. methods and concepts to the three-dimensional supercritical wing

optimization design problem. The specific implementation involves
I, development of the nonllnea- approximation method in a form suitable for

predicting surface properties un three-dimensional supercritical wings;
and then integration of that form of the approximation method with a
wing design optimization procedure. The FLOZ2OPT wing optimization
procedure recently developed at Ames Research Center was selected for
this study. That procedure consists of the CONMIN optimization code
Ref. 8) coupled with the FL022 three-dimensional full potential solver
Ref. 9) for determining transonic flows past wing-body combinations.

*1
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2. ANALYSIS

2.1 DESCRIPTION OF THE NONLINEAR APPROXIMATION CONCEPT

The classical approach of developing a perturbation or
approximation analysis -- that is, by establishing and solving a series
of linear perturbation equations in the manner of Van Dyke (Ref. 10) -

- . appears as an obvious choice for the current application. However,
results from the work reported in Ref. 1 demonstrate that for

* applications to sensitive flows such as occur in most transonic
situations, the basic linear variation assumption fundamental to such a
technique is sufficiently restrictive that the permissible range of
parameter variation is so small to be of little practical use. An
interesting and novel alternative to the linear perturbation equation
approac! has recently been successfully examined in which a correction
or approximation technique is used that employs two or more nonlinear .--

0_ base solutions. For the approximation method, the basic perturbation
solution is determined simply by differencing two nonlinear flow
solutions removed from one another by some nominal change of a

* particular flow or geometrical quantity. A unit perturbation solution
is then obtained by dividing that result by the change in the perturbed
quantity. Related solutions are determined by multiplying the unit-
perturbation by the desired parameter change and adding that result to
the base flow solution. This simple procedure, however, only works

* directly for continuous flows for which the perturbation change does not
alter the solution domain. For those perturbations which change the

* flow domain, coordinate stretching is necessary to ensure proper
definition of the unit perturbation solution. Similarly, for
discontinuous flows, coordinate straining is necessary to account for
movement of discontinuities due to the perturbation. We will discuss in
detail the importance of coordinate straining to the approximation
method below.

The attractiveness- of such an approximation method is that it is
not restricted to a linear variation range but rather replaces the-
nonlinear variation between two base solutions with a linear fit. This
de-emphasizes the dependence and sensitivity inherent in the linear

* perturbation equation method on the local rate of change of the base
flow solution with respect to the varied quantity. For many
applications, particularly at transonic speeds, the flow is highly-
sensitive, and the linear range of parameter variation can be

*sufficiently small to be of no practical use. Furthermore, other than
the approximation of a linear fit between two nonlinear base solutions,

* this new method is not restricted by any further approximations with
respect to the governing differential equations and boundary conditions.
Rather, it retains the full character of the original methods used to -4
calculate the base flow solutions. Most importantly, no perturbation
differential equations have to be posed and solved, only algebraic ones.
In fact, it isn't even necessary to know the exact form of the

* perturbation equation, only that it can be obtained by some systematic
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procedure and that the perturbations thus defined will behave in some
' generally appropriate' fashion so as to permit a logical perturbation
analysis. For situations involving perturbations of physical
parameters, such as reported here, the governing perturbation equations
are usually transparent, or at least readily derivable. Finally, in
applying this method it isn't necessary to work with primitive varibles;
rather the procedure can be applied directly to the final quantity
desired. An important qualification of this method is that the two base
solutions required for each parameter perturbation considered must be
topologically similar, i.e., discontinuities or other characteristic
features must be present in both base solutions used to establish the
unit perturbation.

The fundamental idea underlying coordinate straining as it relates
to the application of perturbation methods to nonlinear flows is
illustrated geometrically in Figure 1. In the upper plot on the left,
two typical transonic pressure distributions are shown for a highly
supercritical flow about a nonlifting symmnetric profile. The
distributions can be regarded as related nonlinear flow solutions
separated by a nominal change in some geometric or flow parameter. The
shaded area between the solutions represents the perturbation result
that would be obtained by directly differencing the two solutions. We
observe that the perturbation so obtained is small everywhere except in
the region between the two shock waves, where it is fully as large as

perturbation technique in that region and most probably somewhat ahead
and behind it as well. The key idea of a procedure for correcting this,
pointed out by Nixon (Refs. 11 and 12), is first to strain the
coordinates of one of the two solutions in such a fashion that the shock
waves align, as shown in the upper plot on the right of Figure 1, and

IL then determine the unit perturbation. Equivalently, this can be
considered as maintaining the shock wave location invariant during the
perturbation process, and assures that the unit perturbation remains
small both at and in the vicinity of the shock wave. Obviously, shock
points are only one of a number of characteristic high-gradient
locations such as stagnation points, maximum suction pressure points,
etc., in which the accuracy of the perturbation solution can degrade
rapidly. The plots in the lower left part of the Figure 1 indicate such
a situation and display typical transonic presst.-e distributions which
contain multiple shocks and high-gradient regions. Simultaneously
straining at all these locations, as indicated in the lower right plot,

- serves to minimize the unit perturbation over the entire domain
considered, and provides the key to maximizing the range of validity of
the perturbation method.

2.2 PREVIOUS APPLICATIONS

At this point, the approximation concept based on the ideas
discussed above has both been implemented and thoroughly tested in a
wide range of problems. In Ref. 1, several candidate approximation
methods were studied and the most promising method was identified.
Extensive development and testing of that method was then carried out in

5



Ref. 4 on a large number of nonlinear flow problems involving
single-parameter changes of a variety of flow and geometric parameters.
Subcritical and supercritical flows past isolated airfoils and
compressor cascades were considered, with particular emphasis placed on
supercritical transonic flows which exhibited large surface shock
movements over the parametric range studied. Comparisons of the
approximation predictions with the corresponding 'exact' nonlinear
solutions indicated a remarkable accuracy and range of validity of the
approximation method. For example, Figure 2 from Ref. 4 provides a
comparison of results illustrating the remarkable ability of the

* approximation method to predict nonlinear supercritical transonic flows.
These results are for surface pressures obtained from full potential
solutions and represent nonlifting flows past several NASA four-digit,
thickness-only airfoils at M 4 = 0.820- The results indicated by the
dotted and dashed lines were obtained for thickness ratios Of T - 0.12
and 0.08, respectively. Those results were used to define the unit
perturbation required by the approximation method. With that unit
perturbation in hand, the approximation method was then employed to
predict surface pressure results for thickness ratios T = (0.110, 0.105.
0.100, 0.095). The approximation results, indicated by the open
symbols, were then compared with full nonlinear results obtained by
running the full potential solver at those thickness ratios. As can be
seen, the results are essentially identical, in particular, in the
region of the strong shock.

The approximation method was next extended (Ref. 6) to treat A--
simultaneous multiple-parameter perturbations. Extensive testing of the
method demonstrated remarkable accuracy and range of validity of the
multiple-parameter approximation procedure in direct correspondence with
the previous results obtained for single-parameter changes.
Additionally, initial applications of the multiple-parameter

* approximation method combined with an optimization procedure were also--
made to several two-dimensional airfoil design problems. The results
demonstrated the potential of the approximation method for reducing the.

* computational work in certain applications by an order of magnitude with
no degradation in accuracy. Finally, in Ref. 7, the approximation
method, configured in a-form suitable for predicting an arbitrary number
of simultaneous multiple parameter changes, was combined with the
COPES/CONMIN optimization driver (Ref. 13) and coupled with the NASA

* TSONIC full potential blade-to-blade turbomachinery solver (Ref. 14). A
series of calculations of the combined code, named BLDOPT, have verified
the procedure, demonstrated the accuracy of the approximation-predicted
results, and established benchmark guidelines of the potential for
computational savings of the method under the various user options

* .included in the code In general, the approximation method was found to
be capable of providing an order of magnitude reduction in computational
work in those applications which involved essentially subcritical or
weakly supercritical turbomachinery flows.

-A
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2.3 THEORETICAL FORMULATION: APPROXIMATION PREDICTION OF SURFACE
PROPERTIES ON SUPERCRITICAL WINGS

*.The underlying reason of the remarkable accuracy of the
* approximation method developed in this study lies in the use of

coordinate straining to define the unit perturbation. As shown in
- Figure 1, where the perturbation between two nonlinear solution states

is displayed graphically as the shaded area between the base and the
strained and unstrained calibration solution, coordinate straining
provides the ability to account accurately for the displacement of a

* multiple number of discontinuities and maxima of high-gradient regions
* due to a parameter change. This enables the perturbation method to

maintain very high accuracy in regions of high gradients where most
perturbation methods commionly fail, and to maintain that accuracy over
large parametric ranges.

In what follows, we provide a brief account of the theoretical
- essentials of the strained-coordinate perturbation concept as configured

and implemented in the present design application. This is to predict
* simultaneous multiple-parameter perturbation flow solutions for surface

properties of supercritical wings for use in optimized wing design. The
flow solutions thus considered can contain a total number N of
discontinuities or high-gradient continuous regions.

I To proceed with the theoretical basis of the approximation method
* as applied to simultaneous multiple-parameter perturbations of flows

*containing multiple shocks or high-gradient regions, consider the
formulation of the procedure at the full potential equation level, since

* all of the results presented here are based on that level. Denote the
operator L acting on the full velocity potential 0 as that which results

* in the three dimensional full-potential equation for 0, i.e.,

V[01 =0(1

If we now expand the potential in terms of zero and higher-order
components in order to account for the variation of M arbitrary

* geometrical or flow parameters qj from their base flow values q0.

M
=0 + Z E j +

j=1
(2)

=j qcj + Aq.

and then insert these expansions into the governing Equation (1), expand
* tre result, order the equations into zero and first-order components,
* and make the obvious choice of expansion parameters cj= qweotithe following governing equations for the zero and M irst-order

components

7
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L[$o] -0 -

(3)
Li[Oj] + - q L[No] 0 .

Here L, is a linear operator whose coefficients depend on zero-order
quantities and 2L[¢o]/Dqj represents a 'forcing' term due to the qtn
perturbation. Actual forms of Li and the 'forcing' term are provided in
Ref. 1 for a variety of flow and geometry parameter perturbations of a
two-dimensional turbomachine, and in Ref. 15 for profile shape
perturbations of an isolated airfoil. An important point regarding
Equation (3) for the first-order perturbations is that these
equations represent a unit perturbation independent of the actual value
of the perturbation quantity £j.

Appropriate account of the movement of a multiple number of
discontinuities and maxima of high-gradient regions due to the changes
in the parameters qj is now accomplished by the introduction of strained

* coordinates (s,t) in the form

M
x = s + Z C x1(st)

j=1 .
(4)

M .
y = t + Z cjy 1(st)

j=1

where

N
xl(s,t) = 6 xi(t)xl (s,t)i=1 1 i

(5)

y)(st) = 6Yyil (s,t)
i=i -

and crj6xi, Ej6yi represent individual x and y displacements due to
perturbation of the qjth parameter of the N strained points, and
xji(st), y1i(s,t) are straining functions associated with each of the N
strained points. For the applications considered here, we have assumed
that all discontinuities such as shock waves or other high-gradient
region maxima occur essentially normal to the wing planform so that only
the (x,y) coordinates require straining. This simplification is not
strictly necessary and could be relaxed in future applications.
However, the effect of this assumption on the prediction of surface
properties via the approximation method is known from extensive studies
of the two-dimensional case to be of higher order for most optimized
design flow situations of aerodynamic interest. Introducing the
strained coordinate Eauations (4) and (5) into the expansion formulation
leaves the zero-order result in Equation (3) unchanged, but results in a

8 1



th

change of the following form for the j perturbation
L1 1 [j] + L2j[o] + -- L[Oo] = 0 (6)

Here the operators are understood to be expressed in terms of the
strained (s,t) coordinates, and the additional operator L2j arises
specifically from displacement of the strained points. In Refs. 12 and
15, specific expressions for L2j are provided for selected perturbations
involving transonic small-disturbance and full-potential equation
formulations. The essential point, however, with regard to perturbation
Equation (6) expressed in strained coordinates is that it remains valid
as before for a unit perturbation and independent of cj.

In employing the approximation method, Equation (6) for the jth unit
perturbation is solved by taking the difference between two solutions
obtained by the full nonlinear procedure after appropriately straining
the coordinates. If we designate the solutions for some arbitrary
dependent flow quantity Q as base Q0 and calibration Qc, respectively,
of the varied independent parameter qj, we have for tAe predicted flow
at some new parameter value qj for all the M parameters 6

M
Q(x,y) = Qo(st) + z c.Q,.(s.t) + ... (7)

j.1 .,3 J.-: ,

where .

Qc (xiP ) - Q (s,t)
Q1j(s"t) = (8)

N
= s + zj Ej6xi(t)xl(sgt )  (9)

N
= t + i Ej6yiyli(st) (10)

M C.

M

y t + E (j(t) - t) (12)
j=1 

-9
igi j-i:i
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.r".=qc* " qo." (13)_ :

., "j." j

ej j qj (14)

We note that in order to determine the first-order corrections
Q2i(s,t), we require one base and M calibration solutions in which the
calibration solutions are determined by varying each of the M arbitrary
independent parameters qi by some nominal amount from the base flow
value while keeping the others fixed at their base values. In this way,
the first-order corrections Q2j can be determined from Equation (8)
where Qcj is dtefined as the calibration solution corresponding to
changing the J parameter to a new value qcj, i* is the strained
coordinate pertaining to the Qcj calibration solulion, and j = qc. -

qoi represents the change in the qj parameter from its base flow val~e.
Th~s, -

E 6xi(t) = (x(t) x:(t))

C t = (xC(t)- x°(t)). (16) - -
i ~i(t) i i .j

= Y~ i (17) .

c€i. ... c o-.-
E3y i = YTi - YAi)1 (18) :

where cj6xi(t) given in Equation (15) represents the x displacement of
the ith invariant line at the spanwise t location in the jth calibration
solution from its base flow location due to the selected change Zj in
the qj parameter given by Equation (13), cj 6 xi (t) given in Equation (16)
represents the predicted x displacement of the ith invariant line at the
spanwise t from its base flow location due to the desired change cj in
the qj parameter given by Equation (14), Ej6yi given in Equation (17)
represents the y displacement of the tip of the ith invariant line in
the jth calibration solution from its base flow location due to the
selected change c" in the qj parameter given by Equation (13), and cj6yi
given in Eauation (18) represents the predicted y displacement of the Al
tip of the ith invariant line from its base flow location due to the
desired change c. in the qj parameter given by Equation (14), xli(st)
is a unit-order siraining fuhction having the property that

10 _



1 k-txli(xk()t' 0 k 1 (17)

which assures alignment of the i invariant line at the t
spanwise location between the base and calibration solutions, and y i(t)
is a unit-order straining function having the property that

1 0 k

k

which assures alignment of the tip of the ith invariant line between
the base and calibration solutions.

In addition to the single conditions given by Equations (17) and
(18) on the straining functions, it may be convenient or necessary to ,
impose additional conditions at other locations along the contour. For
example, it is usually necessary to hold invariant the end points along --

the contour, as well as to require that the straining vanish in a
particular fashion in those locations. All of these conditions,
however, do not serve to determine the straining uniquely. The
nonuniqueness of the straining, nevertheless, can often be turned to
advantage, either by selecting particularly simple classes of straining
functions or by requiring the straining to satisfy further constraints
convenient for a particular application.

The fact of nonuniqueness of straining function, however, raises a
further question of the dependence of the final approximation-predicted
result on choice of straining function. An initial example of the
effect of employing two different straining functions for a strongly
supercritical two-dimensional flow was provided in Ref. 12, and in
Ref. 4 a detailed exami.nation was made of the dependenceof approximation S
results on several classes of different straining functions. Although
it can be demonstrated (Ref. 3) that the final approximation-predicted
result obtained when employing strained coordinates is formally
independent of the particular straining function used -- provided that
the straining function moves the invariant points to the proper
locations -- the results of Ref. 4 demonstrate that, under certain
conditions, particular classes of straining functions can induce
spurious approximation results. The underlying reason is that, while the
approximation-predicted results at and in the vicinity of invariant
points are independent of the choice of straining function (provided
invariant point locations are preserved), .some classes of straining
functions have the undesirable property of producing unwanted straining
in certain regions removed from the invariant points. The correction
for this deficiency, which was found in Ref. 4 and has proven effective
in all case studies undertaken, is to employ linear piecewise-continuous
straining functions. This both preserves the accuracy of the

11•
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approximation results in the vicinity of the invariant points, and
introduces no excessive straining in regions removed from those

* locations.

For linear piecewise-continuous straining functions, the functional
forms of the straining can be compactly written. For the x displacement
we have

-sM s s- x.(t)
M =s+ l (t) s (xc(t) x (t )) +1

X?1+1 - x4. (t) - x(t)

- xi+I(t))j} H(xi+1 (t) - s) H(s -x(t)) (19)

where H denotes the Heaviside step function. As discussed above, it is
usually necessary to hold invariant both of the end points along the
contour in addition to the points corresponding to discontinuities or

* high-gradient maxima. Consequently, for the results reported here, the
array of x invariant points in the base and calibration solutions have
been taken as

xi°( )  {0. xl*(t), x22it), .. ntI - T-:
TTL xnT(t

(20)
c ct -xij(t) {0, x (t), x (t), ... , (t),

where the contour length at the spanwise location t has been normalized
to unity and where n is-the number of invariant points along the contour
exclusive of the end points.

Similarly, for the y displacements of the tips of the discontinuity
lines we have

T - t t - y°T-

M t +{~~ 1 T' .(y~ YT +y
YTi+ I  Ti+1 T i

(y YT+) H(y -t). H(t-yT0 ) (21)H(Yi~ J i+I  • ..
(Yi+ 12 1"

12 ::

..... ..... ......... ....... . ... .. .*..**



.-

where the spanwise locations of the tips of the discontinuity lines in - :
the base and calibration solutions have been taken as

'YI " {YT1" "YT2," YT99"' YTn .' L "''"":. ." ''

I n
(22)

0

31

-' S- -;i

SL

S-'; -''i '

S°°"." ".
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3. RESULTS

Because the ultimate utility of the approximation methods being
developed in this preliminary investigation lies in engineering design
of optimized supercritical wings, the primary objective of the current
study was to examine the accuracy and range of validity of the
approximation method in test cases characteristic of that environment.
The objective here was to better understand the approximation method's
present strengths and to uncover any of its weaknesses. Toward that
end, we have tested the approximation method in a stand-alone mode in
several supercritical wing case studies involving the simultaneous
change of multiple parameters comprised of both flow and geometric
quantities. As with the previous testing of the approximation method in
two-dimensional applications, emphasis was placed on transonic flows
that are strongly supercritical over the parametric range studied. This
was done so as to provide as severe a test as possible. In addition to
the stand-alone testing of the approximation method, the method was
integrated with the FLO22OPT using optimization procedure which consists
of the FL022 three-dimensional full potential solver (Ref. 9) coupled
with the CONMIN optimization code (Ref. 8). Next, several preliminary
optimization case studies were carried out to examine the approximation
method's ability to perform in an actual supercritical wing design
environment.

3.1 APPROXIMATION METHOD PREDICTION OF SUPERCRITICAL WING PRESSURES

Several case studies were undertaken to examine the accuracy of the
approximation method in predicting strongly supercritical transonic
flows past wings. The particular wing geometry configurations selected
for study, although not specifically directed toward a
currently-operational design, were chosen to be representative of modern
transport aircraft wing designs. Figure 3 displays the shape of the
planform that was selected. The section profiles of the wing consisted
of NACA 65A215 profiles, with the maximum thickness of the sections
varying linearly across the span from T = 0.08 at the root chord to r =

0.06 at the tip.

In Figure 4, we present a comparison of approximation-predicted and
exact nonlinear results for the simultaneous perturbation of oncoming
Mach number and angle of attack of highly-supercritical flows past the
wing shown in Figure 3. The base flow chosen for these results is at M.
= 0.80 and a.= 0 , while the calibration solutions required to determine
the unit perturbations in M and a where selected respectively at (M.,)

(0.82,0") and (0.80,3"). All of these flow field solutions, as well
as those employed in the optimization *studies presented below, were
obtained from the FL022 code employing a medium density mesh with a
total of 60 chordwise points, 11 spanwise, and 12 normal mesh planes.
These flow solutions were then used together with the approximation
method to predict the upper surface pressure distribution results at
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(Me) (0.85.1) displayed as the open circles in Figure 4 at the
varijous spanwise locations indicated. Those results are meant to be

compared with the corresponding "exacto nonlinear results which are
indicated as the solid lines. In the approximation results, the leading
and trailing edges, and the shock point were held invariant. The shock
point locations for this example, as well as for all of the results
presented here, were determined as the point where the pressure .-

coefficient passed through critical with compressive gradient.

With regard to the results, we note that the comparison between the
approximation-predicted and the exact nonlinear result is quite good, in
particular in the region of the shock. The approximation method is able
to predict accurately both shock location and the critical post-shock
behavior. Results for the region from the leading edge to points ahead
of the shock are essentially identical to the exact nonlinear solution,
as are results aft of the post-shock region. We note that the
particular parameter values of (Mm,c) - (0.85,10) selected for the
predicted solution represent reasonably substantial excursions from the
base and calibration values. Nevertheless, the approximation method is

r I able to predict simultaneous parameter variations over this range
accurately.

In Figure 5 we present analogous results for a three-parameter
perturbation of strongly supercritical full-potential flows past a
similar wing as that Shown in Figure 3, except that the wing tip chord
ratio for the new wing was increased to 0.75 from 0.50. These results
involved the simultaneous perturbation of oncoming Mach number, angle of
attack, and wing thickness ratio. The base flow parameters involved an
oncoming Mach number of % z 0.80, angle of attack a - 1', and root
chord thickness ratio 'r -m 0.70. The three calibration solutions
required to account for changes in the three varied parameters involved
the following parameter value changes (M.,,T) - (0.82,2-,0.85). For
example, the calibration solution for Mach number was run at the new
Mach number Mm a 0.82, with the other two parameters held fixed at their
base flow values. Thus, the parameter values for the Mach number
calibration solution were (M ,T') - (0.82,10,0.70), with corresponding
values for the other two caliVration solutions. The comparison of the

- .approximation-predicted and exact nonlinear results are for the
parameter values of (M acit) - (0.85,00,0.80), and are shown at the
various spanwise locations in Figure 5. This particular set of flows
was again selected, as in the previous example, because of the presence
of a strong shock across the span and a high sensitivity to parameter
change. As with the previous results shown in Figure 4 for two
simultaneous parameter variations, we observe that the approximation
predictions are once again notably accurate for this three parameter
perturbation. The approximation method is able both to track the
location of the shock, as well as to predict the pressure
characteristics in the pre-shock and post-shock regions. We note with
regard to the shock topologies in these examples that both of the case
studies presented involve full span shocks. Finally, we note that these
result's were obtained with the approximation method configured in a
modified and improved form from that previously reported in References
1-7. This involved the development and incorporation of a more accurate

4.LVIC



invariant point straining procedure than was heretofore used. This
improvement utilizes a more accurate explicit straining point location -

* procedure for the final approximation predicted result, in contrast to
the usual implicit procedure employed in all the previous realizations
(References 1-7, 11, 12, 15) of the method.

-. This feature considerably enhances the capability and generality of
pthe method. The explicit straining procedure, which in essence

specifies the points at which the final solution results are determined
rather than allow these points to be determined implicitly from the
straining of the base flow points as was done standardly in the past,

* avoids a double interpolation of the approximation result. In a series
of tests on highly-supercritical airfoils, this new procedure has been
found to yield significantly improved accuracy in high-gradient regions-
at only a very slight increase in computational work.

One of the most important results to emerge from the calculations
involved in these case studies was the discovery of a particular

- deficiency of the approximation method, and the subsequent development
of the means to improve the accuracy of the approximation predictions in
shock regions and other high gradient regions. The improvement in the
basic pro.cedure developed to meet these requirements consists of
employing additional invariant points in those high gradient locations.
For example, it was found that by characterizing a shock which has a

* post-shock expansion region, as sketched below,

UP

+0 I

with five invariant *points -- which correspond to: (~pre-shock
minimum pre sure, ®0 maximum gradient point, ®~post-shock maxim m
pressure, (4) post-shock minimum x pansioA pressure location, and 5.~

*point of inflection between points ( 3) an 45 -- rather than just the
one point corresponding to the critical pressure location, which was
standardly done in the past; that significantly improved approximation
results are obtained in the shock region for extreme solution
extrapolations. The primary difficulty of this five point
characterization of the shock is that at this time it is not
automatically implemented in the present method, but requires user

*intervention. Consequently, this more accurate procedure was not
p employed in the optimization studies reported below. In future work -

this improvement should be automated and included in the method.
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3.2 PRELIMINARY APPLICATION OF APPROXIMATION METHOD TO SUPERCRITICAL
WING OPTIMIZATION

The ultimate general utility of the approximation methods developed
.. and evaluated here lies in their application to problems involving the

repetitive use of computationally-expensive codes to determine a large
.- number of related nonlinear flow solutions. The concept is that these
* approximation methods would be coupled with these high run-time

computational codes and used in conjunction with them in those
applications to reduce the computational requirements substantially.
This would be accomplished by employing the approximation method to
reduce to a certain minimum the number of the computationally-expensive
solutions required to accomplish the application.

The specific application of the approximation concept in this study
is toward the general supercritical wing design optimization problem.
One of the major objectives of the present investigation was the
demonstration that the approximation method is capable of working
effectively in such an important and practical nonlinear design
environment. Toward that objective, the approximation procedure was . -

implemented as follows. First, the approximation method was configured
in a form suitable for prediction of surface properties on
three-dimensional supercritical wings. Next, that method was then
integrated with a proven wing design optimization procedure capable of
treating supercritical wings. The optimization procedure selected wasUthe FLOZ2OPT method recently developed at Ames Research Center. That

procedure consists of the CONMIN optimization driver (Ref. 8) coupled
with the FL022 full potential three-dimensional flow solver (Ref. 9).
The latter method is capable of determining transonic flows past either . -

wing alone or wing-body combinations. Finally, applications 'were made
-- L of the combined procedure to several case studies involving wing section

profile optimization. The objectives of these initial applications were
to demonstrate the workability of the approximation concept in a
supercritical wing design environment, provide a benchmark of the
potential for computational savings of the combined
approximation/optimization procedure for some typical design problems,
determine the accuracy of the approximation-predicted results for these
cases, and finally identify any areas of improvement required for more
general wing optimization studies.

The particular wing design optimization problems selected for study
involved the alteration of a baseline sectional profile shape at various
spanwise locations along the wing by adding to that baseline profile a
set of shape functions according to the relation

Z(x) - (x) + Z (DVI. - 1) Fi(x) (23)

where Zo are the ordinates of the baseline profiles, Fi are the shape
functions, and the coefficients DVi are the design variables. Those

17
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values are determined by the optimization program as a result of a
search through design-variable solution space to achive a desired design
improvement. Here for convenience we have chosen the coefficients of Fi  6
to be (DVi-1) rather than DVi . The general class of geometric shape
functions employed here, and which have been found to be successful in
previous applications involving optimization of supercritical airfoil
sections (Ref. 16), consists of exponential decay functions and
sinusoidal functions. These are of the general form (1-x)-xP/eqx  and
sin (Irxr)n, where the exponents p, q, r, and n are selected to provide a
desired maximum at a particular chordwise location. The exponential
functions are generally employed to provide adjustments near the leading
edge, while the sinusoidal functions are used to provide maximum
ordinate changes at particular chordwise stations. Illustrations of the
chordwise variation of typical members of these classes of shape
functions are provided in Figure 6, and it can be seen that these
functions smoothly concentrate ordinate thickness at selected locations.

A strategy which has proved convenient for performing optimization
studies involving aerodynamic performance parameters (Ref. 16) has been
to recontour the profile shape so as to tailor the surface pressure
distribution to conform to a desired distribution. This type of
objective provides local control over the basic aerodynamic surface flowproperty of importance, and provides a means of attempting to achieve

aft pressure gradients sufficiently weak to avoid separation. An
important corollary advantage of using such an objective is that viscous
separation can be minimized. This allows use of an inviscid aerodynamic
flow solver in the optimization process rather than a much more
computationally-expensive viscous solver, and assures that the
optimization result thus obtained at the inviscid level is
representative of the actual flow.

In such studies, the characteristics that are primarily sought 3
after in the optimization process are the minimization of both the peaky
behavior near the leading edge and the compressive gradient on the aft
portion of the suction surface that typically exist on the baseline
profiles considered. This is illustrated schematically in Figure 7.

Consequently, for these preliminary case studies the overall
performance objective was, through modification of the surface contour,
to tailor the pressure distribution along a portion of the upper surface
so as to conform to a desired distribution. The objective function was
taken as the minimization of the mean squared error between the
predicted and desired surface pressure distribution, i.e.,

K
OBJ = Z [Cpr(XK) - CPdesi (XK)]2  (24)

K=1 predicted desdred

I

where K represents the number of chordwise locations x where desired
and calculated surface pressures are compared. K
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In developing the combined APPROX/FLO22OPT program, we have
pincorporated several features that enhance the robustness and user use

- of employing the code. These ideas were based on our experience with
the approximation method in two-dimensional optimization applications

* (Ref. 7) for nonlinear internal flows. One of these features was the
-. development and use of the explicit straining procedure mentioned

*previously. The most important of the other features relates to the way
that the calibration solution matrix required by the approximation
method is defined. Two separate options have been incorporated in the

-:current program. The first option employs the approximation method in
its usual fashion whereby the user specifies the matrix of calibration
flow solutions to be determined. These solutions correspond to nearby
(to the basef low) solutions associated with the separate variation of
each of the M design variables appropriate to the optimization problem
under consideration. With this option, calibration matrix definition
can be accomplished by either individually specifying all the design

* variables or alternatively by employing a constant-value calibration
* step size which increments each design varible by a fractional change of

its base flow value.

* . The second of these options provides the user with a basically
* automatic hands-off procedure for using the perturbation method. Under

this option, the user is not required to preselect and input the design
variable values for the calibration solution matrix. Rather the matrix
is determined completely by the program in the following way. For the
first optimization cycle, the approximation method is not used. Full
nonlinear aerodynamic solutions are determined by the flow field code as

* required as input for the gradient and search optimization calculations.
*After the first search cycle is complete and a new design point

determined, design variable values for the calibration solution matrix
are then determined based on the direction that the first search cycle

- has taken. We have in series of tests involving two-dimensional airfoil
* optimization studies verified that such a procedure results in an

extremely good de'inition of the calibration solution matrix. The
result is that the design variable solution space which is subsequently
searched on the second and successive optimization cycles usually
requires only very reasonable interpolations/extrapolations within the
design variable parameter range of the defined solution matrix.
Consequently, this option provides an automatic, user-invisible
procedure for defining the calibration solution matrix. It does,
however, require the additional computational cost of one optimization
search cycle using the exact nonlinear aerodynamic flow solver in
contrast to the first option which requires the user input of the design
variable values for the calibration solutions. Nevertheless, this
second option provides a highly accurate and basically hands-off means
of employing the approximation method, and we recormmended it for use
when little or no information is available on search direction from

* previous or related calculations.

The wing design problem that the combined APPROX/FLO22OPT program
-:has been initially directed toward is the performance of wing section

* profile design optimization at a specified number N of selected spanwise
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stations along the wing. As shown below, this would proceed
sequentially one station at a time from root to tip.

01 02 !

i I I I I

In this procedure the effect of profile changes of outboard stations on
previously-optimized inboard stations is initially ignored, but . -

subsequently checked after the final outboard station is optimized. If
the optimization changes on the outboard stations have resulted in a
degradation of the performance of the inboard stations, then the
procedure can be repeated with another inboard to outboard sweep using
the final design variable information obtained from the previous pass. ..-

Previous experience has shown that for wings swept at approximately 350 -

or more, a single optimization pass is sufficient. Wings of lower sweep
may require an additional pass.

For the initial application of the combined
approximation/optimization method, we have tested the complete procedure
on a five design variable problem involving supercritical surface
pressure tailoring for transonic flows at M = 0.85 and a = 10 past the
wing described previously in Figure 3. We employed the following shape
functions

Z(x) = Zbase(X) + Z (DVi - 1) sin ( rlx (25)i=1 . :

with the base profile shapes of the wing sections taken as a NACA 65A215
profile and the exponents ri = (0.301, 0.431, 0.576, 0.756, 1.000).
These particular sinusoidal shape functions achieve their maxima at
(10%, 20%, 30%, 40%, 50%) of local chord. The desired pressure
distribution chosen as the target was taken simply to be

(x/c) = -0.10 , 0.05 < x/c < 0.50 (26)
desi red

at the selected spanwise stations to be optimized.
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In Figures 8 and 9 we demonstrate, in terms of final design
M Lvariable accuracy and potential computational time savings, comparisons-
L of results between the approximation method and those obtained when

using the exact nonlinear solutions for this 5 design variable
supercritical wing surface pressure tailoring case study. The
optimization was performed at the root chord station using the program
option to automatically define the calibration solution matrix. Figure
8 provides a comparison of the approximation predicted final design
variables and objective function (e0) with those obtained with not using
the approximation method but employing exact nonlinear full potential
aerodynamic solutions throughout ( 0). These are the results after 5
optimization cycles. We note the essentially exact correspondence
between the final design variable values. Corresponding comparison of
the objective function shown on the right, in fact, indicates a slightly
better result obtained by the approximation method (m ). In Figure 9,
the corresponding comparison of computational work in CPU seconds and
objection function reduction per optimization search cycle is provided.
Here we see that after the first cycle is complete, the approximation

-- procedure actually requires less time to define the calibration matrix
solution and complete the second search than does the full nonlinear
flow field method with the same reduction in objective. From that point
on, the approximation method requires essentially no time to complete
searches 3 to 5, and then an additional increment to calculate the final
design result using the nonlinear flow field solver. Time savings
achieved with the approximation method for this case is 58% of that-k required for the exact nonlinear result.

Figures 10 and 11 provide similar results for the spanwise station
y/s - 0.52. Again we observe that the approximation procedure is able
to provide very accurate results in comparison to the results obtained
when not employing the approximation method but using the nonlinear flow
solver throughout the optimization search. Time savings for this case
was 55% of that required for the exact nonlinear result.

In Figures 12-15, we have provided analogous comparative results of
the approximation method obtained when employing the option of
specifying the calibration solution matrix. In this case study, we have
used a uniform design variable stepsize increment of DVi = -0.001 for
each of the five design variables. This represents a better than usual
estimate (see Figures 8 and 10) of the calibration matrix in the sense
that only modest interpolations and extrapolations will be required of
the approximation method by the optimization procedure as it searches
through design solution space for the optimum. Without some a priori
knowledge of the direction of the optimization search, large
interpolations and extrapolations are often required of the
approximation method. This usually results in a subsequent degradation
in accuracy of the approximiation predictions under this option. For
this case study, as might be anticipated from the above discussion, the
approximation-predicted desim- variables are in as good agreement with
the exact nonlinear result, as they were in the previous comparisons
which employed the program option to automatically define the
calibration solution matrix. The computational time savings in this
instance are shown in Figures 13 and 15, and as expected are greater
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(68% vs. 58% at y/s = 0.0; 64% vs. 55% at y/s = 0.52) than before due
to the savings of essentially one optimization cycle involving the use
of the exact nonlinear flow solver.

A series of related optimization studies analogous to those
presented in Figures 9-15 was next undertaken. A common problem quickly
became apparent in these studies that led to inaccuracies in the
approximation-predicted results. This problem was related to the sudden
occurrence, during the optimization process, of additional shocks. For
example, this could be a high strength shock appearing near the wing
leading edge, often forming initially at the wing tip and working
inboard, or it could be the formation of an additional shock near the • -

wing midchord line that would intersect the main shock. Several of
these more complex shock topologies that occurred are illustrated in the
bottom of Figure 16, together with the more usual shock patterns that
were observed. Although the approximation method is capable of
simultaneously treating multiple shock and high gradient regions, a
fundamental limitation of the method as it is presently constituted is

•~ that the basic topology of the solutions that it is approximating must
remain the same. This means that, over the range of parameter variation a

* that the method is to be employed, no shocks or other high-gradient
regions be either added or lost. This limitation appears not to be
satisfied for many of the supercritical wing optimization problems of
interest, in which an additional shock can suddenly appear during the
optimization process, but disappear or weaken considerably as the
optimized design point is approached. Our experience in two-dimensional J
supercritical flow optimization problems has been that this phenomena

* almost never occurs. It appears in the three-dimensional problem that
the additional degree of freedom that the flow has allows these sudden
occurrences to happen when sensitive supercritical flows are

_ simultaneously perturbed in various ways. The remedy to this is to
extend the basic capability of the approximation method so that such 3 .

: .topology changes can be allowed. This is feasible, but will require an
extension of the method in which additional calibration solutions are
employed that allow the approximation solution to cover more than one
topology. Generally speaking, one additional calibration solution
matrix will be required for each topology change. Development of the
approximation method, in a fashon that can automatically sense and
extend itself to cover topology changes, appears to be a necessary
refinement in order to extend the utility of the approximation method to
general three-dimensional supercritical wing optimization design
problems.
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.:.." -.'.I

.7



4. CONCLUSIONS AND RECOMENDATIONS

*An investigation was conducted involving the preliminary
* development of approximation procedures for determining rapid and

-accurate approximations to three-dimensional transonic flows past
supercritical wings. The ultimate purpose is to establish a method for

-minimizing computational requirements associated with optimization
design studies of supercritical wings. The procedures being developed
employ unit perturbations, determined from two or more nonlinear 'base'
solutions which differ from one another by a nominal change in some
geometry or flow parameter, to predict a family of related nonlinear
solutions which can be either continuous or discontinuous. The results
reported here relate to the extension of the previously-developed
successful method for multiple-parameter two-dimensional perturbations:
(1) to simultaneous multiple-parameter three-dimensional perturbations,
and (2) to the preliminary application of the multiple-parameter

*three-dimensional procedure in combination with the FLO22OPT
* optimization procedure to some initial design problems.

* Calculations based on three-dimensional full-potential nonlinear
solutions have been carried out to establish the accuracy and range of
validity of the multiple-parameter three-dimensional capability. These-

I involved flows past transport aircraft wings involving simultaneous
* changes in both flow and geometric parameters, with attention focused on

strongly supercritical situations involving large surface shock
movements over the parameter range studied. Preliminary applications of

* the multiple-parameter perturbation method coupled with the FLO22OPT
optimization procedure were made to wing design problems in order to

* examine the capability of the method to produce accurate results in a
typical design environment, and also to evaluate its potential for
computational savings. This was focused primarily on supercritical case
studies involving multiple-design variables. Sensitivity studies were
also performed to examine the accuracy dependence of the perturbation
method on the choice of the initial calibration solution matrix.

Comparisons of the multiple -parameter perturbation results with the
corresponding 'exact' nonlinear solutions display good accuracy and
indicate a large range of validity for those situations where the basic

* -flow topology does not change over the parametric range studied. This
is in direct correspondence with previous results for strongly
supercritical two-dimensional flows. The preliminary case studies of
the multiple-parameter perturbation method combined with optimization
procedures have clearly demonstrated the capability of the method to

* work accurately in a design environment, and have also established the
methods' potential for reducing the computational work required in such
applications by factors approaching an order of magnitude. Sensitivity
studies indicate that for supercritical flows, although the choice of

*the initial calibration matrix i s important, the approximation
predictions can nevertheless maintain reasonable accuracy even for
poorly-selected calibration matrices. Because general supercritical
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wing optimization problems often involve changing shock and/or
high-gradient region topologies, it appears that an extension of the
present method is appropriate and needed to treat this more general
problem.

Based on these results, we conclude that approximation methods
formulated on these ideas are both accurate and clearly workable in ..

design environments, and can provide the means for substantially
reducing the computational work required in such applications. We
suggest the development of the combined multiple-parameter approximation
procedure and optimization methods into a robust design tool for
supercritical wing design.

24

* * * . ...- * *.* * * * *-.*.-



REFERENCES

1. Stahara, S. S., Chaussee, D. S. , and Spreiter, J. R.: Perturba-
tion Solutions for Transonic Flow on a Blade-to-Blade Surface of
Compressor Blade Rows. NASA CR-2941, January 1978.

2. Stahara, S. S., Crisalli, A. J., and Spreiter, J. R.: Evaluation
of a Strained Coordinate Perturbation Procedure: Nonlinear Sub-
sonic and Transonic Flows. AIAA Paper No. 80-0339, January 1980.

3. Stahara, S. S., Elliott, J. P., and Spreiter, J. R.: A Rapid
Method for the Approximate Determination of Nonlinear Solutions:
Application to Aerodynamic Flows. ICAS Paper No. 80-7.5, October
1980.

4. Stahara, S. S.. Elliott, J. P., and Spreiter, J. R.: A Rapid Per-
turbation Procedure for Determining Nonlinear Flow Solutions:
Application to Transonic Turbomachinery Flows. NASA CR-3425, May
1981.

5. Stahara, S. S.: The Rapid Approximate Determination of Nonlinear
Solutions: Application to Aerodynamic Flows and Design/Optimiza-
tion Problems. Transonic Aerodynamics. (Ed. D. Nixon) Vol. 81,
Progress in Astronautics and Aeronautics. AIAA, N.Y., 1982,
pp. 637-659.

6. Stahara, S. S., Elliott, J. P., and Spreiter, J. R.: Development
of a Multiple-Parameter Nonlinear Perturbation Procedure for
Transonic Turbomachinery Flows: Preliminary Application to

" Design/Optimization Problems. NASA CR-3657. January 1983.

7. Stahara, S. S.: Development of a Turbomachinery Design Optimiza-
tion Procedure using a Multiple-Parameter Nonlinear Perturbation

. -Method. NEAR TR 295, October 1983.

8. Vanderplaats, G. N.: CONMIN - A Fortran Program for Constrained
Function Minimization, User's Manual. NASA TMX-62, 282, August
1973.

9. Jameson, A. and Caughy, D. A.: Numerical Calculation of the
Transonic Flow Past a Swept Wing. Courant Inst. of Math. Sci.
Report COO, 3077-140, June 1977.

10. Van Dyke, M.: Perturbation Methods in Fluid Mechanics. The
Parabolic Press, California, 1975.

* . 11. Nixon, D.: Perturbation Methods in Transonic Flow. AIAA Paper
No. 80-1367. July 1980.

* 25.i* * . . . * .* .-- ***.*.* * * * *- . *** * * * * *

-' -i "-. ." "-. .: '.,''.. i. ' .., .- *. -- ....'' .. "...t.' ' ' .'-. . ' '-, .- ..''' '. ....,'' ' ' '•. . . - ' " - -" . " ..".s,2 ."" " ' .i ' -, i '. -- --



12. Nixon, D.: Perturbations in Two- and Three-Dimensional Transonic
Flows. AIAA J., Vol. 16, July 1978, pp. 699-709.

13. Madsen, L. E. and Vanderplaats, G. N.: COPES - A Fortran Control
Program for Engineering Synthesis. NPS 69-81-003, March 1982.

14. Katsanis, T. and McNally, W. D.: Fortran Program for Calculating - "

Velocities and Streamlines on a Blade-to-Blade Stream Surface of a
Tandem Blade Turbomachine. NASA TND-5044, 1969.

15. Nixon, D.: Design of Transonic Airfoil Sections Using a Similarity
Theory - NASA TM 78521, October 1978.

16. Hicks, R. M. and Vanderplaats, G. N.: Application of Numerical
Optimization to the Design of Supercritical Airfoils without
Drag-Creep. SAE Paper 770440, 1977.

A

26

• o

-p - -p -' -. - -. -.-. -p . ..--.-. * ~ * . * ~ ~ ~.p :.. .~•* o. .



" -Perturbation for Perturbation for
calibration solution calibration solution
in physical coordinates in strained coordinates

- Cp Cp

0

+ 
+

i (a) Single shock.

(b) multiple shock and high-gradient locations.

* Figure 1.- Illustration of the coordinate straining concept for the
application of perturbation methods to nonlinear flow problems;
shaded areas denote the perturbation between two nonlinear,
discontinuous, transonic flows with (right hand plots) and

without (left-hand plots) coordinate'straining
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pressure results for the simultaneous three-parameter perturbation of

(M, , ~)for a strongly supercritical wing flow.
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Figure 8. - Comparison of approximation predicted and exact nonlinear
results for final design variables and objective function
for 5 design variable supercritical case study with surface
pressure tailoring objective at the wing root chord station.
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Figure 9. Comparison of computational work and object' ve function
reduction per optimization search cycle when employing
approximation method after first search cycle (0) or when
using exact nonlinear solutions (0) for 5 design variable
supercritical case study with surface pressure tailoring
objective at wing root chord.
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Figure 10. -Comparison of approximation predicted and exact nonlinear
results for final design variables and objective function
for 5 design variable supercritical case study with surface
pressure tailoring objectve at the YI S =0.52 spanwise
location.
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Figure 11. -Comparison of computational work and objective -'unction
reduction per optimization search cycle when e7,,lcsinr
approximation method after first search cycle (@)'or when
using exact nonlinear solutions (0) for 5 design variable
supercritical case study with surface pressure tailoring
objective at the Y/S 0.52 spanwise location.
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Figure 12. -Comparison of approximation predicted and exact nonlinear
results for final design variables and objective function
for 5 design variable supercritical case study with surface-
pressure tailoring objective at the wing root chord station.
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Figure 13. - Comparison of computational work and objective function
reduction per optimization search cycle when employing

approximation method (0) or exact nonlinear solutions
(C)) for five design variable supercritical optimization

case study with surface pressure tailoring objective at

wing root chord.
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Figure 14. -Comparison of approximation predicted and exact nonlinear
results for final design variables and objective function
for IS design variable supercritical case study with surface
pressure tailoring objective.
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Figure 15. - Comparison of computational work and objective function
reduction per optimization search cycle when employing
approximation method (0) or exact nonlinear solutions
(0) for five design variable supercritical optimization
case study using a surface pressure tailoring objective at
the Y/S g 0.52 spanwise location.
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